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PREFACE

This Memorandum derives from RAND's continuing interest in the
assessment of reliability and related quantities. In part, it is
complementary to work reported earlier in RM-4317-NASA.

The Memorandum is addressed to statisticians, test engineers,
and managers concerned with assessing reliability. The investigation
described was undertaken as a part of the reliability assessment study
that RAND is conducting for the Apollo Reliability and Quality Office,
Hq NASA, under contract NASr-21(11).

Two of the authors, Richard E. Barlow and Frank Proschan, have

been consultants to The RAND Corporation.
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SUMMA-RY ag1444y«/*)

This study examines two problems. The first deals with estimat-

ing the reliability of a system that is undergoing developmental
testing for the purpose of increasing its probability of successful
operation, or increasing its time-to-failure, or decreasing its fail-
ure rate, If one or more of these events occur, we say reliability
growth is taking place. Three models of reliability growth are. for-
mulated, and appropriate maximum likelihood estimates and conservative
confidence bound procedures are derived for them.

The second problem treated here deals with the "debugging" of a
new complex system during the initial period of its total life.
During this period failures and errors are corrected as they occur,
with resulting improvement in subsequent performance of the system,
One mathematical idealization of this process leads to the assumption
that system failure rate is decreasing with time., 1In practice, the
debugging phase is considered completed when the failure rate reaches
an equilibrium or constant value. Models are formulated for this
phenomenon. Maximum likelihood estimates are obtained for relevant
failure rate functions and for the end of the debugging period. A
conservative upper confidence bound on the stable failure rate is
obtained.

Both problems are treated from a point of view which lies between
a completely nonparametric approach in which no information is assumed
available concerning the form of the distribution, and a parametric
outlook in which the form of the distribution is assumed known but a
finite number of parameters need to be estimated.

Methods given in this paper are illustrated by numerical examples.
The paper is arranged so that a reader not interested in the mathe-

matical details can skip them, yet still understand the nature of the

models and how to apply the techniques. x o~
ar+
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1, INTRODUCTION

An important group of reliability problems consists of those
in which the reliability of an evolving system is to be estimated

at successive stages of its development. The evolution may be the

result of changes in design which improve the reliability of the

system, or of so-called "debugging" in which system weaknesses are
gradually discovered through experience and removed. Most studies

in the literature have assumed a_priori knowledge of the form of the
function governing reliability growth. (See, for example, Lloyd and
Lipow (1962), Chap. 1ll; Wolman (1963); Bresenham (1964); and Corcoran,
Weingarten, and Zehna (1964).) Unfortunately, in many cases the only
a_priori knowledge actually available is that the reliability at
successive stages of evolution is monotonically increasing (not neces-
sarily strictly).

Another group of reliability problems centers about the following.
It is common practice after installing a new complex system such as
that involving a missile, airplane, computer, etc., to 'debug" it
during the initial portion of its total life. During this debugging
period, failures and errors are corrected as they occur, with resulting
improvement in subsequent system performance, One mathematical ideal-
ization of this process leads to the assumption that system failure
rate is decreasing with time. 1In practice, the debugging phase is
considered completed when the failure rate reaches an equilibrium
or constant value. An important problem is to determine when the
constant failure rate condition has been achieved and to estimate the
constant failure rate.

For the problems outlined above, we obtain maximum likelihood
estimators (MLE's) and/or conservative confidence interval procedures.
This is done without the customary assumptions concerning the form of
the life distribution, The approach is intermediate between a completely
nonparametric point of view (in which no information is assumed available
concerning the form of the distribution) and a parametric outlook (in
which the form of the distribution is assumed known, but a finite

number of parameters are to be estimated).
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The maximum likelihood estimators for our problems have, for
the most part, been developed elsewhere (Ayer, et él (1955), Marshall
and Proschan (1965)). We will exploit these known results and give a
discussion of some properties of the estimators. One should point out
that because of the constraints under which the MIE's are obtained,
they do not necessarily enjoy all the desirable properties of MIE's in

..... tuations. (See, for example, Cramér (1946), Chap. 33.)

Under the heading of conservative confidence bounds we seek
methods which allow us to claim with specified (high) assurance that:
a) the reliability of a system in its latest stage of development is
at least a certain value; b) the cumulative distribution function,
at a fixed time, of time-to-failure of a system in its latest stage
of development lies below a certain value; and c) the "stable" failure
rate of a system which is being debugged during development and initial
use is no greater than a certain value.

If, as is customary, one assumes that the underlying failure
distribution belongs to a specific family of distributions (e.g.,
exponential, Weibull, gamma, or normal), then standard methods are
available for obtaining confidence bounds. (See Mood and Graybill
(1963), Chap. 11; Lehmann (1959), Chap. 5; or Kendall and Stuart (1961),
Chap. 20.) However, in many situations it may be unwarranted to assume
a given form for the failure distribution. Possibly the most that one
can say is that the failure rate of the system is increasing (correspond-
ing, physically, to wearout) or decreasing (as in the case of system
debugging). In other situations in which the system is evolving, it
may not be reasonable to suppose that the evolution follows a specified
functional form; but only that the reliability in successive stages of
development has not deteriorated. 1In such cases, how does one obtain
a confidence statement concerning reliability, failure rate, the distri-
bution function, etc.?

Clearly, without a knowledge of the form of the distribution of
a relevant statistic, one cannot hope to obtain exact confidence bounds.

However, for the problems listed above, we obtain conservative confidence

bounds. That is, our assurance is at least (instead of exactly equal to)

a specified value that the reliability, fajilure rate, etc., falls in some




confidence set determined from the observations. Of course, the
price one pays is that the confidence sets tend to be larger than

in the case in which the failure distribution is assumed to belong

to a particular family of distributions. However, we shall show that
the conservative confidence bounds obtained have the property that
for a member of the class of distributions under consideration the

confidence bounds are exact, not merely conservative.



2. MODELS

This section contains a precise specification of each
mathematical model to be treated. The relevant maximum likelihood
estimates and conservative confidence interval procedures are derived
in Secs. 3 and 4, respectively. These procedures are summarized and
illustrated in Sec. 5. Readers interested in the techniques, but
not in the mathematical details, may, after reading the present

section, bypass Secs. 3 and 4 and turn directly to Sec. 5.

2.1 RELIABILITY GROWTH MODELS

A. Success or Failure Observations

A system is being improved at successive stages of development.
At stage i the system reliability (probability of success) is P;-
The model of reliability growth under which one obtains the MLE's
of Pys pz""’Pk assumes

(2.1 Py < P, < ... < Py -

Condition (2.1) requires that reliability not degrade from stage to

stage of development. No particular mathematical form of growth is

imposed on reliability, however. 1In order to obtain a conservative

lower confidence bound on pk, we do not need as strong an assumption
as specified by Condition (2.1). It suffices to require that

(2.1 2 max Py -

P i<k
Condition (2.1') merely states that the reliability in the latest
stage of development be at least ag high as that achieved earlier in
the development program. Condition (2.1') is clearly weaker than
Condition (2.1).

Our data consist of xi succegges in ni trials in stage i,
i=1,2, ..., k.




A variation of this model is treated in Barlow and Scheuer (1964).

There, two types of failure -- inherent and assignable cause -- are

distinguished.

B, Life Length QObservations - Ordered Distribution Functions

A system is being improved at successive stages of development.
At stage i, the distribution of system life length is Fi' The model
of reliability growth under which we obtain MLE's of Fl(t), Fz(t),

Fk(t) for a single, fixed value of t, writing fi(t) =1 - Fi(t)’ is

(2.2) il(t\ < iz(c) < ... s ik(t) for a fixed t = 0.

In order to obtain a conservative, upper confidence curve on Fk(t)
and thereby, a conservative lower confidence curve on fk(t) for

all non-negative values of t, it suffices to require that

(2.2") F, (t) = max F,(t) for all t 20,
k . i
i<k
Condition (2.2') states that the probability of system survival
beyond any time t in the latest stage of development is at least
as high as that achieved earlier in the development program.
Our data consist of independent life length observations
X,.5..., X, i=1, ..., k.

Note that (2.2) and (2.1) are equivalent if one calls the
event X,, > t "success" and the event Xij < t "failure,” §j =1, ...

ij
n,; i=1, ., k.

1

C. Life Length Observations - Ordered Increasing Failure Rate

Functions

We first define precisely '"failure rate" in general and
"increasing failure rate" in particular. For a distribution F with
density f, the failure rate r(t) at time t is defined as r(t) =
f(t)/ﬁ(t), where i(t) =1 - F(t). Thus, r(t)-dt may be interpreted
physically as the probability of failure in the interval [t, t + dt]



given survival to time t, If a unit is wearing out, it may very
likely display an increasing failure rate. Note that when the
failure rate is increasing, log ﬁ(t) is concave. This motivates

the definition of increasing failure rate (IFR) in the general case
where a density at each point is not assumed necessarily to exist.

We say failure distribution F has increasing failure rate if log f(t)
is concave; similarly, we say F has decreasing failure rate (DFR) if

1%8 F(x) = 0 and log é(t) is convex on [0, «). (See Barlow, Marshall,
X

and Proschan (1963) for a discussion of the properties of distributions

with increasing (decreasing) failure rate.)
Assume, then, that system life at the i-th stage of development
has increasing failure rate. Because of improvement from stage to

stage
(2.3) rl(t) = rz(t) zZ ... 2 rk(t) for t = 0,

where ri(t) is the failure rate at time t at the i-th stage of
development. This means that for each t = 0, the probability of
system failure in the interval (t, t + dt), given survival till time
t, does not increase from stage to stage of testing.

Given life-length observations Xil’ Xiz’ e Xin" we wish to
obtain the maximum likelihood estimate of rl(t), r2(t)% vees rk(t),
especially rk(t).

A similar model may be formulated in which system life has

decreasing failure rate,

2.2 .DEBUGGING MODELS

Debugging and reliability growth have a good deal in common.
The main difference is that in the debugging models described below,
system reliability improves continuously with time (i.e., failure
rate is decreasing), while in the reliability growth models of
Sec. 2.1, improvement in system reliability occurs only when a system

design change occurs,




A. Decreasing Failure Rate, Followed by Constant Failure Rate

Suppose Xl’ the time to the first failure, has distribution
F(t) having failure rate r(t) which is decreasing for 0 < t < ty
and constant for t > t,. After failure, repair is performed so that

0
the system operates again. Assume further that the system failure

rate is restored to the value it had just prior to the failure,.
Specifically, assume that X , the time between the (i-1)st failure
1

and the i-th failure has distribution

F(Si-1+ x) - F(S'-l)
(2.4) Fy (0 = 1 - F(5, ) -
i i-1

for x 2 0

{where Si- =X 4+ ... + xi 1), the conditional distribution of a

R | |
system of age si-l'

Given observations X, , X ...,Xb, we seek: a) maximum likelihood

’
estimates of t,s the end if tﬁe debugging period, and r(to), the
equilibrium failure rate; and b) a conservative upper confidence bound
on r(to).

It is of interest to note the common-sense procedure often used
in this situation to estimate t and r(to). A graph is drawn in which
the cumulative number of failures is plotted against elapsed operational
time as in Fig. 2.1. (See Rosner (1961).) Debugging is terminated
approximately at that point in time when the slopes %.:.ﬁ%:ll = l—'of

h " %1 %

successive secants (shown by dashed lines) appear to have reached an

equilibrium value. These slopes represent failure rates over successive

time periods. System improvement corresponds to the situation in which

1 . A
the slopes, X » are decreasing with h, However, due to statistical

h
fluctuations, some reversals-will occur. The common-sense graphical

procedure described above furnishes no precise way of taking into

account these reversals. Our technique provides for this.
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B. Decreasing Failure Rate, Negligible Decrease Beyond a Point

In many piactical situations it is not realistic to insist on
determining the point t  beyond which failure rate is constant.
Rather, for pragmatic purposes it suffices to find the point t1
such that r(tl) - lim r(t) = ¢, for some specified ¢ > 0. Thus, we
wish to find the pgz:t beyond which further reliability improvement
can decrease the failure rate by only e.

Specifically, we use the same assumptions and notation as in
2.2A; there is the additional assumption that r(t) is continuous.

We wish to obtain maximum likelihood estimates of t., and a conserva-

1
tive upper confidence bound on r(tl).

C. Debugging Not Completed During Period of QObservation

1) The assumptions and notation are as in 2,2A. Assume,

however, that constant failure rate is not attained during the

period of observation. Finally, assume that observations Xl’ X2""Xn
are available from just one copy of the system. We wish to estimate
r(t) forOStsSn=X1+... +X .

2) In a more general version of 1), we have k copies of the

system, each copy independently operating as in 1). Observations

Xij’ i=1, ..., k; j=1, ..., n;, are obtained. The distribution
of X., is
1]
F(S, . +x) - F(s, , )
Fx (X) = l)J } llj 1 s
ij F(Si,j-l)

the conditional distribution of an item of age S, ., =X, +X _+ ..
i,j-1 il i2

Xi j-1° Again we wish to estimate r(t) during the observation period.
3

.

4
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3.  MAXTMUM LIKELIHOOD ESTIMATION UNDER CONSTRAINTS

We may obtain a maximum likelihood estimator (MLE) in each of
the models of Sec. 2 using methods developed in papers by Brunk (1955,
1958); by Ayer, Brunk, Ewing, Reid, and Silverman (1955); and by
Van Eeden (1956, 1957, 1958). The key idea may be described as
follows:

For Models 2.1C and 2.2A, B, and C of Section 2, to maximize
the likelihood, the failure rate should be taken constant between
observations. This is intuitively obvious from the fact that the
likelihood depends only on the densities at the observations. Thus,
the failure rate should be made as small as possible between obser-
vations so as to have as much probability as possible available at
the observations. Since the failure rate is assumed monotone, the
failure rate must be set constant between observations. This reduces
the problem to the maximization of a function of a finite number of
unknown parameters subject to constraints. In a similar manner, the
problem of Model 2.1B may be reduced to the maximization of a function
of a finite number of unknown parameters subject to constraints.

Brunk (1958) presents a procedure which may be used for maximizing
a concave function G(yl, cees yk) of k real variables subject to N
constraints, The i-th constraint requires that the vector of k

variables lie in a convex region Ai of Euclidean k-space, i =1,

2, ..., N. The first step is to determine the point at which G
attains its unrestricted maximum. If this point lies in AIAZ"'AN
(the intersection of Al’ A2, e AN), it is the solution. If not,

one of the sets is selected in which it does not lie, and designated
as Al(relabeling perhaps being necessary). Next, we seek the point
qq in A1 at which G attains its maximum over Al' If B(Ai) represents
the boundary of Ai’ i=1,2, ..., N, we find that 9 lies in B(Al)'
If 9 lies in A1A2...AN, it is the solution. If not, we designate

as A2 (relabeling, if necessary) one of the sets which does not
contain q;- Next, we maximize G subject to y € A1A2. The maximizing

value 9, lies on B(Az)- Next , we find the point, q,, where G is
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maximized subject to y € AZ' If 1, € A1A2’ then q, =

solution of the present limited problem. Otherwise,

q12 is the
95 € B(Al)B(Az) .
We continue in this fashion until that point in AlAZ...AN is found at
which the maximum of G is attained.

This concise description of the Brunk procedure for finding a

maximum subject to constraints will become more meaningful when

it is applied to the models of Sec. 2.

3,1 THE MLE'S FOR THE RELIABILITY GROWTH MODELS

A. Success or Failure Observations

The MLE's for this model are found by Ayer, Ewing, Brunk,
Reid, and Silverman (1955). They are displayed, together with an

example, in Sec. 5.1A.

B. Model 2.1B - Life Length Observations - Ordered Distribution
Funct jions

Again, Ayer, Ewing, Brunk, Reid, and Silverman (1955) have
found the MLE for this model. We display them, together with an

example, in Sec. 5.2A.

C. Model 2,1C - Life Length Observations -~ Ordered, Increasing
Failure Rate Functions

Grenander (1956), and Marshall and Proschan (1965) have given
the MLE for a single failure rate function, r(-), under the assumption
that r(*) is a monotone function. Here we seek the MLE of several
failure rate functions, rl(-), cees rk(-), under the assumption
that each ri(-) is an increasing function and that rl(t) p= rz(t) z ...
rk(t) for all t < 0. The log-likelihood, which is to be maximized by
proper choice of the functions rl(-), .++, Tp(+) subject to the con-

straints, is

n, n,-1
k i k i
(3.1) i§1 jzl log r(Xij) - izl jzl (ni-J)(Xi,j+1—xij)r(xij)'
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The MLE's fl(-), cees fk(-) are step functions, constant between
observations. In some instances it is convenient to determine the

maximizing step functions by a "concave programming' procedure.

3,2 THE MLE'S FOR THE DEBUGGING MODELS

Using arguments similar to those in Marshall and Proschan {1965},
we may establish that the MLE for r(t), call it fn(t), is constant
on the intervals between observations. Explicit formulas for the
estimate of r(t) for the various models will be given in Sec. 5.2.

Reference to that section will be helpful for the remainder of Sec. 3.2.

A. MLE of t, and r(to) for Model 2.2A

A
The MLE t, of to is obtained by first going through the same
procedure as in estimating r(t) in Sec. 5.2 below. The estimate
Eo is taken as the observation corresponding to the beginning of the

last averaging interval. In the notation of Sec. 5.2, tO = Sn .
k
It turns out that in this case the MLE of to is a poor one

since,as the number of observations increases to infinity, to con-
verges almost surely to infinity.
The estimate of r(t,) is the value of £(t) in the last interval.

In the notation of Sec. 5.2, r(to) = rnk+1,n'

B. MIE of t1 for Model 2.2B

Again we proceed as in Sec. 5.2 below to obtain the MLE of r(t)
under the assumption of decreasing failure rate., Let k* be the

smallest index k, such that f(Sk) - f(Sn) < ¢. Then the MLE El for

t, is Sk* since r(t) is the MIE for r(t), 0 <t < Sy and r(Sk*)

A N + A
r(Sn) 2 ¢ while r(Sk*) - r(Sn) < e.
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In this casL, the MLE El does not converge almost surely to
infinity\when the sample size n grows indefinitely large, as in
Model 2.2A; thus, the estimate does not suffer from the serious
weakness possessed by Eo of Model 2.2A. On the other hand, El does
not converge almost surely to tl as n — ©, since successive obser-
vations provide information about the failure rate at successively
later points on the time axis while, roughly speaking, for consis-

tency (convergence almost surely of t. to tl) one needs more and

1

more information about tyasn = @, This lack of consistency is

no real criticism, however, since from the nature of the model,

no consistent estimator of t1 exists.

C. Debugging Not Completed During Period of Observation

Marshall and Proschan (1965) have provided a procedure for
obtaining the MLE for monotone failure rate functions. This is
precisely the technique needed for this model. The procedure is

outlined and examples are given in Sec. 5.2.
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4. CONSERVATIVE CONFIDENCE BOUNDS

In this section methods are presented which allow us to claim
with specified (high) assurance that: a) the reliability of a system
in its latest stage of development is at least a certain value; b) the
distribution function of time-to-failure of a system in its latest
stage of development everywhere lies below a certain curve; c) the
"stable" failure rate of a system which is being debugged during

development and initial use is no greater than a certain value.

4.1 A CONSERVATIVE CONFIDENCE BOUND ON THE STABLE FATLURE RATE
OF A SYSTEM BEING DEBUGGED

In this section we show how to obtain a conservative confidence
bound on the stable failure rate which is finally attained by a system
being debugged during its development phase and early usage period.
This particular example should make the basic idea clear. We then
state the general theorem which exploits this basic idea. With this
general theorem as a basis, conservative confidence bounds for our
models are developed.

We consider Model 2.2A in which the failure rate of the system
is a decreasing function of time for 0 < t < tO and is a constant,
say equal to ros for t = to. The system is put into operation at time
zero and is run until failure at time Xl. Repair occurs in negligible
time (e.g., the module containing the failed part is replaced immediately).

The system resumes operation and continues until the next failure occurs

X2 units of time later, i.e., at times 52 = X1 + X2. Again, repair
occurs in negligible time, and the system runs until the next failure
X3 units of time later, at time 83 = X1 + X2 + X3. This continues

until n successive life lengths X Xn are obtained.

1’ X2, cees
The basic idea in obtaining the conservative confidence bound on
ro, the stable failure rate, may be stated intuitively as follows. The
observation, Xi’ is a random variable from a distribution whose failure
rate at each point of time is at least as great as T i=1, 2, ...,n.

Therefore, if one uses the observations Xl’ X Xn to estimate a

g3 e
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single failure rate (pretending that all the Xi are from a common
exponential distribution), the estimate will tend to be higher than ro-
Similarly, an upper confidence bound for this common failure rate,
calculated from the observations Xl’ X2, e Xn as though they were

a sample from a single exponential distribution, will constitute a
-conservative upper confidence bound for ro- We make these ideas
precise now.

Lemma 4&.1. Let X1 have distribution F(x), X2 have conditional

distribution

F(XIPX) - F(Xl)

3 e s ey

F(Xl)
Xi have conditional distribution

F(si +x) - F(S. .)

-1 i-1
)

FG8i

where F has failure rate r(t) = r for all t 2 0. Let Yl’ Y2, ...,Yn

be independent observations from the exponential distribution with
failure rate r . Then Z? X, is stochastically smaller® than 2? Y.
Proof, First assume that F is continuous. Let the random
+
1’ x1 X2’

random variables Yi, Yi + Yé,

variables X .s &L, X, be simultaneously transformed into

oy = Yi under the transformation

1 -
' ! o i =
(4.1) Y+ ... + Yi T log F(X1 + ...+ Xi)’ i 1

1 ,n.

3o e

*
If P(U=2t) <P(V 21t) for each t, then the random variable U
is said to be stochastically smaller than the random variable V.
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Then for i =1, ..., n

1 = 1 =
! —_ - — —_—
P[Yi > ul] = P r log F(x1 + ...+ xi) + o logF(x, + ... + Xi_l) > u]

[ i(x1+....x ) 1
= log L« - ru
F(Xp+. . 4K, )
F(X,+...+X.) -r u -r u
=P L <e ° =e ° ,

F(X+.. 4K, )

since the random variable

F(X +. . . 4X,)

F(X 4o 4%, )

is uniformly distributed on fO,l}.“ Thus, the Yi, e Y; are

independently distributed according to

-r x
Gr (x) =1 - e © ,

(o}

the exponential distribution with failure rate Lo

Next observe that if y = - %ﬁ'log F(x), then
)

sle

= E&El > 1 for all x = 0.

(o]

3.

“1f a random variable T has survival probability function H, a
continuous function, then the random variable ﬁ(T) is uniformly dis-
tributed on [0,1]; Iv-‘(Si_1 + x)/f‘(Si 1) is the conditional survival

probability function of Xi given §, 1
l-
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Thus, under the transformation (4.1)

Y'4 ... +Y" 22X, + ... +4X .
1 n 1 n

It follows from Lehmann (1959), Lemma 1, p. 73*, that 2?'Yi is
stochastically larger than ETXi.

If F is not continuous, the same result may be obtained by
limiting arguments.”

We now apply Lemma 4.1 to obtain a conservative confidence
X

1> oo X
Since Yl’ ceey Yn are exponential with failure rate ro,

bound on ro from observations X

xi_a(Zn)/ZZ]?Y&.is an upper 100(l-o) percent confidence bound on

L where xi_a(Zn) is the 100(l-&) percentile of the chi-square

distribution with 2n degrees of freedom. Hence
2 n 2 n
-y = < .
l-o P[ro X1 - 20) /221Yi] < P[ro S PN ¢ /2>:lxi]

Thus Xi_a(Zn)/ZE;}(i is a conservative 100(l-a) percent upper confi-

dence bound on ro- Note that if F is the exponential distribution,

the confidence bound is exact.

This Lemma states: "Let Fo and F1 be two cumulative distri-
bution functions on the real line. Then Fl(x) < Fo(x) for all x if
and only if there exist two nondecreasing functions fo and fl’ and
a random variable V, such that a) fo(v) < fl(v) for all v; and b) the

distributions of fo(v) and fl(v) are Fo and F, respectively." 1In

1
1 -
our case, take fo(v) = v, fl(v) = T log F(v), Fo =F, F1 =G .
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4.2 GENERAL THEOREM FOR CONSERVATIVE CONFIDENCE BOUNDS

The ideas used in Sec. 4.1 lead to the following general theorem
for obtaining conservative confidence bounds.

Theorem 4.1. Let

a) Y be an observation on a random variable
(in geneval, vector-valued) having distri-
bution function G(y,8), with 6 a one-

dimensional parameter;

b) é(z) be a one-dimensional statistic based

on the observed vector ¥;

c) p(@(z)) be a 100(l-a) percent upper confidence
bound on 8, where p(u) is a decreasing

function;

d)

<

be an observation on a random variable
(vector-valued) having distribution

function F(x,8); and

e) é(X) be stochastically larger than é(g).

Then

Plp(8(®) = 8|F(x,0)] 2 1-a,

that is, p(é(&)) is a conservative 100(1l-a) percent upper confidence

bound on 6, the parameter of the distribution F.

Proof. First, assume p is continuous and strictly decreasing.

Let u(-) be the inverse of the function p(-). Then

1-o = P[p(B(Y) = 8la(y,8)] = P[B(® = u(8) |6(y,8) ],
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the first equality following from c) and the second holding since
u(+) is the inverse function to p(-), a decreasing function. By

e)

P[8(D) s u(®)|6(y,8)] < P[BX) < u(8) [F(x,8)]

= Plp(B(®)) =2 0|F(x,9)],

the last equality following again from the fact that u(-) is the
inverse of p(-) and p(‘) is decreasing. Combining results, we

obtain

Pp(8(X)) = 8|F(x,0)] = 1-0c.

If p is not continuous or strictly decreasing, the same results
may be obtained by limiting arguments.”
Other cases of interest are covered in:

Corollary 4.2.

1) 1If p(u) is an increasing function and 8(X) is stochastically

larger than é(z), the same result follows.

2) If p(u) is a decreasing function, p(g(z)) is a 100(i-a)
percent lower confidence bound on the parameter 8 of G, and é(&)
is stochastically larger than 5(1), then p(@(&)) is a conservative

100(1-&) percent lower confidence bound on the parameter 8 of F.

3) If p(u) is an increasing function, p(é(Y)) is a 100(1-0)
percent lower confidence bound on the parameter & of G, and é(g) is
stochastically smaller than é(g), then p(é(X)) is a conmservative
100(1-o) percent lower confidence bound on the parameter 8 of F.

The proof in each case is similar to that of Theorem 4.1.
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4.3 RELIABILITY GROWTH WHEN ONLY SUCCESS OR FAILURE IS OBSERVED

In Model 2.1A, we considered a system being improved at successive
stages of development. Specifically, in condition (2.1'), we require
Py 2 Tgﬁ pi; that is, that the reliability in the latest stage of develop-
ment be at least as high as that achieved earlier in the development
program. Suppose that X, successes are observeg in n, trials in stage
i, i=1, 2, ...,k, where all trials are independent. From this set
of observations, we wish to establish a conservative 100(l-¢) percent
lower confidence bound on Py the reliability of the latest version of
the system for which data are at hand. A variation of this model (in
which two kinds of failure are distinguished) is treated by Barlow and
Scheuer (1964).

Let X:.L be a binomial random variable corresaonding to n, trials
with underlying probability of success P> X = 21 Xi’ and let Y be a
binomial random variable corresponding to n = Z? ng trials with under-
lying probability of success Py- Then Y is stochastically larger than
X since Y is the sum of independent random variables each of which is
stochastically larger than the corresponding random variables comprising
X. Using Corollary 4.2(3), one may obtain a sharp conservative
100(1~-«) percent lower confidence bound for Py by finding the value p(x)

satisfying
X N i n-1
T@Dp@-p) " =1-a

k
where x = ¥, x.. Then
1 7i

P[pk 2p(x)] 21 - @

that is, p(x) is a conservative 100(l-q) percent lower confidence bound

for Py the reliability at the latest stage of development.
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Note that the only information required to find the desired
bound is the total number of successes and the total number of trials.

The stage-by-stage history of the development program is not needed.

4.4 RELIABILITY GROWTH WHEN LIFE LENGTHS ARE OBSERVED

In Model 2.1B, we consider a system being improved at successive
stages of development corresponding, say, to basic design changes. At
stage i, the distribution of life length is Fi' No assumption is made

about the form of Fl’ F2, cee, Fk’ nor about the relation among them

except that Fk(t) < méﬂ Fi(t) for all t. This means that the proba-
i
bility of system life exceeding any fixed time is greatest at the

last stage of system development. Independent life length obser-

vations Xi X, are obtained at stage i, i =1, 2, ..., k.

1° " in.
1

From these n = ZT ni observations, we wish to obtain a conservative
100(1l-o) percent upper confidence curve on the entire failure dis-
tribution function, Fk(t), of system life in the latest stage of
development.

We first prove

Lemma 4.2, Let Xil’ ceey X'n be independent observations from F _,
—_— in, 1
i

i=1, ..., k, with F,(t) < min F,(t) for all t, and let F(t) be the
k i<k 1

empirical distribution function formed from all the observations

Xil’ ey Xin.’ i=1, ..., k. Let Yil’ oo Yin.’ i=1, ..., k be
1 i

independent observations from Fk(t)’ and let ﬁk(t) be the empirical
. Y, ,1=1, ..., k. Then

1 - in,
i

distribution function formed from Yi

given any function u(t)

PIF(t) = u(t) for all t} » P[f‘k(t) > u(t) for all t].

Proof. First assume F, continuous and strictly increasing,
. . -1 .
i=1, ..., k., Define Zi = Fi Fk(Yij)’ j=1, ..., n; i= 1, ..., k.

3

Then the set of random variables Zi s, J=1, ..., ni; i=1, ..., k has

i
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the same joint distribution as the set Xij’ j=1, ..., n_, i=1, ...k,

(This statement may be verified by using the following argument:

P[zij < zijj

-1
P[Fi Fk(Yij) < z,

1j] = P[Fk(Yij) = Fi(zij)]

P[Fi(Xij) < Fi(zij)] = P[Xij < zii]

Since each Yij has distribution Fk and each Xij
each of the Fk(Yij)'s and Fi(Xij)'s is a uniform random variable on

(0, 1))
Moreover, since Fi(t) > Fk(t) fori=1, ..., k and all

has distribution Fi’

E, Zij f Yij’ = 1,6..., ni; i=1, ..., k. Thus, for each t,
H(t) = Fk(t), where H(t) is the empirical distribution function
formed from Zi , =1, ..., ni; n=1, ..., k. Thus, for any
function u(t), P[ﬁ(t) = u(t) for all t] = P[fk(t) = u(t) for all t].
Finally, since the Zi 's havehthe same joint distribution as the Xij's,
P[F(t) = u(t) for all t] = P[F, (£) 2 u(t) for all tl.

If any Fi is not continuous or strictly increasing, the same
result may be obtained by limiting arguments.“

We now use Lemma 4.2 to form a conservative 100(1l-&) percent
upper confidence curve on the entire distribution Fk‘ Birnbaum and
Tingey (1959) tabulate values €. o satisfying

’

P[G(t) < min (G(t) + €g o) foralltl 21 - a,

?

where G(t) is a distribution function and a(t) is the corresponding
empirical distribution function based on a sample of n from G. The
value €0 o is independent of G(t). If in Lemma 4.2 we take u(t) =

Fk(t) - en’d, then
F F > F (t) for all t] = l-o
P[F(t) + €0 o F, (t) for all t] = P[F (1) + € o F, () ;

that is, ﬁ(t) te o is the desired conservative 100(l-a) percent upper
b

confidence curve on Fk
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5. SUMMARY OF PROCEDURES AND EXAMPLES

In this section we describe and illustrate by example the maximum

likelihood estimation and conservative confidence interval procedures

for the models of Sec, 2,

5.1 RELTABILITY GROWTH MODELS

5,1A Model 2.1A - Success or Failure Observations

Qur data consist of xi successes from ni observations in

stage i, i =1, ..., k.
(i) To obtain the maximum likelihood estimates of P> > Py
subject to the restriction that Py < p2 < ... < Py first

form the ratios x1/n1, x2/n2, ey xk/nk. If xl/n1 < x2/n2 <
.. < xk/nk, then xi/ni is the MLE p, of p,. If for some j

(=1, ..., k - 1),xj/nj > xj+1/nj+

in the j-th and (J + 1)-st stages and examine the ratios,

1° combine the observations

xllnl, v xj-llnj—l’ (xj + xj+1)/(nj + nj+1),

/n

42 M420 0 WL

for the (k - 1) stages thus formed. If these ratios are in
nondecreasing order, they constitute the MLE's of Pys

Pin ) [y Hngy
the process of combining stages until the ratios are in non-

- Py
with ﬁj = = (xj + x ). If not, continue
decreasing order. This process need be repeated at most

(k - 1) times, and the result is independent of the order
in which stages are combined to eliminate reversals in the
sequence of ratios.

Example: The procedure is illustrated by the data in the
following table.
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No. of }No. of

Stage | Successes|Trials
(1) (x.) (ni) xi/ni
1 2 5 . 400
2 3 7 .429
3 3 8 .375
4 2 6 .333
5 6 6 1.000

The process of combining stages to get a sequence of non-

decreasing ratios is summarized below:

First Second Third

ilx,|n, |x%x./n, |Combination | Combination | Combination

1 1 1 L
1 2 5 .400 .400 400
2 3 7 .429 6
3 3 8 .375 j\7= = .400 8 _ 10 _
sl 2] 6] .333 |'%° .333 o1 = 38l |\ 56 = -385
5 6 6] 1.000 1.000 1.000 1.000

Thus, we obtain the maximum likelihood estimates

Py =P, =Py =5, = .385 p; = 1.000.

(ii) A conservative 100(l-¢) percent lower confidence bound
on pk, the reliability of the latest version of the system,
is found by treating the data from the k stages of the
development program as though they were homogeneous, then
applying the standard binomial approach to get a lower
confidence bound on a binomial parameter having observed
X = Z? xi successes in n = Z? n, trials. (See Mood and
Graybill (1963).) Thus, to obtain the conservative lower
confidence bound on p, , the stage-by-stage history of the
development program is not needed; only the total number

of successes and the total number of trials.
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Example: In the example 5.1A(i) above, a total of 16
successes were observed in a total of 32 trials. A

95 percent lower confidence bound for a single binomial
parameter based on these data is found from binomial
tables to be .344, Thus, a conservative 95 percent

lower confidence bound for P is .344,

5.1B Model 2,1B - Life Length Observations - Ordered Distribution

Functions

(1)

As described in Sec. 2.1, Model A, let Xi X, be the

1’ °°°" Tin
observations obtained from distribution Fi’ where because
of reliability growth, it is known that Fl(t) p= Fz(t) >
.2 Fk(t) for a fixed t = 0. We obtain MLE's of Fl(t),
o Fk(t) for this fixed value of t as follows. For i =1,
2, ..., k, obtain the empirical distribution function

Fini(t) from Fini(t) = mi(t)/ni, where mi(t) = number of

observations among xil’ xiZ’ D ¢ not exceeding t,

in,
i

£ Flnl(t) = anz(t) Z .02 Fknk(t)’ then these con-

stitute MLE's of Fl(t)’ Fé(t), cees Fk(t) respectively.

Suppose, on the contrary, the reversal,

mi(t) m  (t)
< T &

i i+l

[

occurs. Then the MLE is obtained by assuming a common

value for F (t) and Fr+1(t). Under this assumption the
i

MLE of this common value is obtained by pooling the

observations from the two distributions to obtain

(t)

3

mi(t. + m1

n,tmna

as the MLE of the common value Fi(t) = F,  _(t). We then

i+l
examine
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m, (t) m, () mi(t) + mi+1(t) mi(t) + mi+1(t)
3 s e ey mmmmm—— ’ ’
n1 ni_1 ni + ni+1 ni + ni+1
™ o6 m (t)
B2 M

If these are in decreasing order, they constitute MLE's
of Fl(t), cees Fi-l(t)’ Fi(t)’ Fi+1(t), Fi+2(t), vens Fk(t).
If on the other hand, a reversal exists, we pool as before
to eliminate the reversal (adding the various mi(t) involved
in the reversal to obtain a new numerator and adding the
corresponding ni to obtain a new denominator). After each
reversal has been eliminated, we test the resulting sequence
of ratios to see if they are in decreasing order. When
finally we obtain such a sequence of decreasing ratios,
these constitute the MLE's ﬁl(t), fz(t), cens ﬁk(t).

An explicit expression for Fi(t) is given by Ayer,
et al (1955):

Fi(t) - max min mr(t) +...+ ms(t)
s>i r=<1i nr +...+n

, i=1,2,...,k.

We remark finally that for the case k = 2, Brunk, et al (1965)
have provided an algorithm for obtaining the MLE's of the
functions Fl(-) and Fz(') over the whole time axis and not

merely at a fixed point, subject to Fl(x) 2 Fz(x) for all x.

Example: A development program has two stages of develop-
ment with four observations in Stage 1 and six observations

in Stage 2. The data are:

X1 = 91 hours Xo1 = 96 hours
X12 = 54 hours X22 = 49 hours
X13 =120 hours X23 =105 hours
X14 = 75 hours X24 =125 hours

X,. =101 hours

25

X26 =115 hours.
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Then
[ 0 t < 54
1/4 , 54 <st< 75
F {12 , 15s¢e< 91

1 (® {

3/4 , 91 <t < 120
1, t = 120

and
0 t < 49
1/6 , 49 <t < 96
1/3 , 96 <t <101
F, () = l1/2 , 101 < t < 105
2/3 , 105 < t < 115
5/6 , 115 s t < 125
| 1 , t = 125

A graph of F14(t) and F26(t) is shown in Fig. 5.1, which
indicates that there is a reversal in the intervals

49 < t < 54, and 115 < t < 120. Pooling to eliminate
these reversals yields for the MLE's ﬁl(t) and ﬁz(t):

[ 0 s t < 49

1/10 , 49 <t < 54

1/4 , 54 <t< 75

fl(t) = J 1/2 , 75 st< 91
3/4 , 91 < t <115

8/10 , 115 <t < 120

{ 1, t =120
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and
(0 s t < 49
1/10 , 49 <t < 54
1/6 , 54 <st< 96
1/3 , 96 <t <101
ﬁz(t)= { 1/2 , 101 < t < 105
2/3 , 105 <t < 115
8/10 , 115 < t < 120
5/6 , 120 < t < 125
(S t = 125 .

A graph of fl(t) and ﬁz(t) is shown in Fig. 5.2.
Note that no reversals remain.

Note, again, that the procedure illustrated above
yields the MLE for any one, fixed, predetermined value
of t, not for the entire distribution function. The
conservative confidence curve procedure, treated below,
is valid for all t 2 0 simultaneously, not merely for
one value of t.

To obtain a conservative 100(1-¢) percent upper confidence
curve on Fk(t) for all t 2 0, combine the n = Zﬁ n,
observations from all the stages and form the empirical
cumulative ﬁ(t) therefrom. Obtain the value € from
Birnbaum and Tingey (1951) reproduced below. Tﬁen

F(t) + € o is the desired confidence curve.
b

Values of ¢
n

,Q’
0 4

n . 100 .050 .010 .001

5 L4470 . 5094 . 6271 . 7480
8 .3583 L4096 .5065 . 6130
10 .3226 .3687 4566 .5550
20 .23155 .26473 | .3285 .4018
40 .16547 .18913 | .2350 .2877
50 . 14840 .16959 | . 2107 .2581

Large n 1 1

_2—n- 1og-&
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Take the data from example 5.1B(i) above,

choosing o = .05. The empirical cumulative F(t)

formed from all the data is

Fk(t)+e

%(t) =

Y

[« JY- T NI, S, B ~ S VURN CRE N o

ﬁ
[

3

)

49
54
75
91
96
101
105
115
120

In this example k = 2, n = n

so that the conservative 95 percent upper confidence curve

on F2(t> is

(

10,.05 ¢

Ll.

The upper confidence

satisfactory because

observations,

.3687
L4687
.5687
.6687
.7687
.8687
.9687

0

b

>

>

101

IA A

A A

IA

W W A A N A A A A
t t ot o ot ot ottt
v A A A AN AN AN NANANA

1

+
"y

ot ot ot ot
A AN AN AN A

re

t
t
t

v A A

49
54
75
91
96
101
105
115
120
125
125 .

= 10, o= .05, ¢

49
54
75
91
96
101
105
105 .

10,.05

curve for this example is not very

of the relatively small number of

=.3687,
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5.1C Model 2.1C - Life Length Observations - Ordered, Increasing
Failure Rate Functions

(i) We seek the MLE's of several failure rate functions
rl(-), rz(-), cees rk(-) under the assumption that each
r.(-) is an increasing function and that r,(t) 2 rz(t) 2

3 rk(t) for all t =2 0. Given observations X,., X

i1’ 7i2°
- Xin from ri(-), the log-likelihood which is to be

i
maximized by proper choice of the functions rl(-), cens

rk(-), subject to the constraints, is

n, n -1
k i k i
L ZTlogr,(X,))- T ¢ n-PE, , X Hr. X, ).
i=1l j=1 1] i=1 j=1 ( i < i, i+l 13) i 13)
The MLE's ?1(-), cees ?k(-) are step functions, constant

between observations. A computer program is being written
. *
to calculate these functions.
(ii) It would be desirable if there were a procedure which
yvielded a conservative confidence bound for rk('), the
failure rate function for the latest stage of development.

Such procedure has not as yet been found.

5.2 DEBUGGING MODELS

5.2.1 MLE for a Decreasing Failure Rate

We begin by giving the MLE, fn(t), for a decreasing failure rate

function based on a sample of size n : X .o Xn from one copy

1 %o
of the system. Recall the notation Si = X1 +-X2 + ... + Xi, with the

convention that S, = 0. The MLE ?n(t) is constant on the intervals

*
Lawrence E. Bodin, University of California, Berkeley, is

writing this program. A description of it, together with examples,
will appear separately,
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-1
f i = ee.,n=1, i
(Si’ Si+1] ori=0,1, n The MLE for r(t) on (Si,Sr+1] is X,
before taking account of the fact that the distribution is DFR. If it
turns out that Xil P X;l 2 ... 2 X;l, then we conclude that fn(t) = X;l
for Si £t< Si+1’ i=0,1, ..., n-1. If a reversal occurs, say
Xil < X;il, then we must average to obtain a common estimate of failure
1 }‘1 -1
rate, { > (Xi + Xi+1) , for §; =t < SL+2' Next we examine Xl’ cens
-1 1 }-1 { 1 }-1 -1 -1 .
rY oo t f
Yo 05 G X)) 102% t X)) K X, toseed

these estimates of the failure rate on the successive intervals are
decreasing. If so, they constitute the MLE's of the failure rates on
the successive intervals. If not, we continue to average until no

reversals remain, At the end of this process, we obtain MLE's

r = o 2...271r satisfying:
1,n1 n1-+1,n2 nk+1,n
1 1
r ={_(x + ... +X )}
l,nl 1 1 ny ,
1 -1
r { —— (X_ .+ ... + X )},
n1+1,n2 n, n; nr+1 n,
—L y 1
r ={ X ,+...+X }
nk+1,n n - n nk+1 n
and

r for 0 £t €8
1 ™

E(t) =(r for S <t <S8§
n( ) < n +1,n2 or n1 n,

for S <t<S§S .
n, n
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No estimate of r(t) is made for t > Sn since no data are available for
that time interval.
Example: In Fig. 2.1 the cumulative number of failures versus

times of failure is graphed for the following data

Time of Time Betwcen
Failure Successive Failures

S1 = 25 hours X1 = 25 hours

82 = 75 hours X2 = 50 hours

53 = 125 hours X3 = 50 hours

S4 = 165 hours X4 = 40 hours

S5 = 240 hours X5 = 75 hours

S6 = 310 hours X6 = 70 hours

S7 = 410 hours X7 = 100 hours

We are assuming that r(t) is decreasing in t so that if there were no
reversals in the observed failure rates on successive intervals, the

estimate of r(t) would be

~ 1
t = ———
r( ) Xi ? Si.

-1
1.e.,
1,111 1 1 1
25° 50° 50 40° 75° 70° 100 °
Si L <-l— and l;-< L h t 1
ince 0 %0 75 70 ° We have two reversals.

By combining the second, third,and fourth estimates (adding
numerators of the three estimates to obtain a new numerator, and
adding denominators to obtain a new denominator), we obtain as our new,

tentative estimate of r(t):

1

w3 _.,3 .3 1. 1.
25 7 140’ 140° 140° 75° 70° 100
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The reversal-l— < l*-iS’left. Combining these as before, we

75 70
obtain finally as the MLE of r at the observations:
A, 1l
r(25) . 25
A . a 3
r(75) = 1(125) = r(165) = 140
A ~ 2
#(240) = #(310) = 7=
- 1
r(410) = 100 °

Between successive observations, T is, of course, constant. Using
this "smoothed" data, we obtain a new graph in Fig., 5.3, in which

the slopes (failure rates) of Fig, 2.1 are smoothed.

5.2.2 MLE for a Decreasing Failure Rate from k Copies of the System

First the actual failure times (not interval between failures)
for all n systems are pooled and ordeﬁed. Call these ordered observa-
tions Tl < T2 < ... < Tn’ where n = igl n, . Between successive Ti’
the failure rate estimate is constant as above. OQur initial estimate
of the failure rate in an interval before imposing the constraint that
the failure rate be decreasing is computed as the reciprocal of the

total test time observed in that interval. Thus, on [0, TI]’ the

initial estimate is (n Tl) 1, on (T TZ], the initial estimate is

1’
-1 e . - -1
{Nl(TZ-TP} , on (TZ,T3], the initial estimate is {Nz(T3 T2)} s ey

on (Tn_l, T ], the initial estimate is (Tn - T )'1 where Ni is the

n
number of systems simultaneously in operation during (T,,
i

n-1

Ti+1]' On

(Tn’w)’ no estimate of failure rate is made since no failures are observed.
The initial estimates are then compared; if they are in decreasing

order, they constitute a MLE of r(t) on [0, Tn]. If a reversal occurs,

we average as above to eliminate it. For example, if Ni_l(Ti-Ti_l) >

N.(T, .-T.), the revised estimate of the failure rate on (T, ., T ]
it i+ i i-1

1 i+1
1 -1
is { 3 [Ni_l(Ti-Ti_l) + Ni(Ti+1-Ti)]} . We continue averaging in this

fashion until all reversals are eliminated. The resulting estimate is
the MLE of r(t) on [0, Tn] under the assumption that r(t) is a decreasing

function,
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Example: The method for obtaining the MLE of r(t) in the system
debugging model is illustrated for two copies of the same system.

Suppose System 1 is debugged at times

S11 = 25 hrs, = 512 = 125 < 813 = 240,

and that System 2 is debugged at times

821 = 75 € 822 = 165 < 523 = 310 < 824 = 410.

If the failure times are pooled and are denoted by Ti’ as before,

our estimate of r(t), assuming no reversal, would be

(1

2T, -1, S EF T 1 E0
t(t) =
1
T - T .’ T1-1 <t«< Ti’ i>5;
i i-1
1 1 1 1 1 1 1 . 1 1 1 1

; e e e Te e s ———— —_— < = —_—C ——
i.e., 555 T00° T00° 80° 150° 70° 100° Si™® Too <80 2™ Ts50 < 70

we have two reversals. By combining the second, third, and fourth

estimates as before,we obtain

1 3 1

. N S
50> 280° 150° 70° 100 °

1
By combining the estimates —Z= and

50 %6’ which represent a reversal, we

obtain

1.3 2 1
50° 280° 220° 100 °

The reversal 2 < L is still left. Combining as before, we

220 100
finally obtain
1
50° 0<t< 25
B(t) = 2 a5<t< 165
280°

—3-2-6,165 <t < 410 .
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5.2.3 MLE for the Time Debugging Ends and for the Stable Failure Rate

To estimate the end point of the debugging period, one first
computes the MLE for the failure rate as above.

For Model 2.2A, the MLE for the end point of the debugging period
is the beginning of the last averaging interval. In the notation of

Section 5.2.1, t, = Sn . The MLE for r(to) is the value of £(t) in
k
the last interval, that is r(to) =r k+1’n.

For Model 2.2.B, in which we wish to estimate t

n
1 the point
beyond which the failure rate does not decrease by more than g, denote
by k* the smallest index k such that f(Sk) - f(Sn) < €. Then the MLE
for t1 is t1 = Sk*'

5.2.4 MLE for the Failure Rate in Model 2.2C

In Model 2.2C debugging is not completed during the period of
observation; that is, the failure rate function does not achieve an
equilibrium value during the observation period. The estimation, by
maximum likelihood, of the failure rate for this model is then precisely
what was discussed in Sec. 5.2.1 for observations from one copy of the

system and in Sec., 5.2.2 for several copies of the system,

5.2.5 Conservative Upper Confidence Bounds on the Stable Failure Rate

In the debugging models the failure rate function is bounded
below. Let r denote the greatest lower bound. It was shown in
Sec. 4 that a conservative 100(1-a) percent upper confidence bound on
r_ can be obtained by treating the data as though they were from an
exponential population with failure rate r . Thus, the desired bound

X is

on r_ based on observations Xl’ e
n

2 n

where xi_a(Zn) is the 100(1-a) percentile of the chi-square distri-

bution with 2n degrees of freedom,
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In the example in Sec. 5.2.1, n = 7 and ZX = 410. Choosing
o = ,05, we find from tables that ¥ 95(14) = 23.7. Thus,

a conservative 95 percent upper confidence bound on r is
23.7/820 = .0289. That is P[r < .0289] = .95.

The data in the example in Sec. 5.2.2 come from two
copies of the system. The procedure for more than one copy
of the system is essentially the same as that for precisely
one system, viz. a conservatlve 100(1 a) percent upper con-
f1dence bound on r_ is Xl (2n)/22 2 X , where
n = Z s k is the number of coples, and n is the number
of observatlons on the i-th copy.

For the data in the example in Sec. 5.2.2,k = 2, n, = 3,

1

n, = 4 (so that n=7), and T & Xij = 650. Choosing o = .05,

a conservative 95 percent upper confidence bound on r, is

23.7/1300 = .018. That is P[ro < .018] = .95.
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